118k views
0 votes
What is the perimeterABC is shown on the grid.9 +27 unitsB11490 9+27 units9+ I units9+VT units

User Bodger
by
5.2k points

1 Answer

5 votes

We have three points that represent the vertices of the triangle

- A( -1, 5 )

- B( 4, 5 )

- C( -1, 1 )

We need to calculate the distances between the points to calculate the perimeter

To calculate the distances we must use the next equation


d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}

Distance for AB:


\begin{gathered} d_1=\sqrt[]{(4-(-1))^2+(5-5)^2} \\ d_1=\sqrt[]{5^2+0^2}=\sqrt[]{5^2}=5 \end{gathered}

Distance for BC:


\begin{gathered} d_2=\sqrt[]{(-1-4)^2+(1-5)^2} \\ d_2=\sqrt[]{(-5)^2+(-4)^2}=\sqrt[]{41} \end{gathered}

Distance for AC:


\begin{gathered} d_3=\sqrt[]{(-1-(-1))^2+(1-5)^2} \\ d_3=\sqrt[]{0^2+(-4)^2}=\sqrt[]{16}=4 \end{gathered}

Finally, the perimeter is


\begin{gathered} S=d_1+d_2+d_3 \\ S=5+\sqrt[]{41}+4 \\ S=9+\sqrt[]{41} \end{gathered}

So, the answer is


9+\sqrt[]{41}\text{ units}

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.