111k views
4 votes
Need help with homework

User Mgrund
by
7.5k points

1 Answer

4 votes

Trigonometric Ratios

A right triangle has one angle of 90° and two acute angles. There are special proportions between the side lengths called the trigonometric ratios.

All the trigonometric ratios in a right triangle are positive.

We need to use some trigonometric identities to find the other five ratios, given one of them:


\begin{gathered} \sin ^2\theta+\cos ^2\theta=1 \\ \tan \theta=(\sin \theta)/(\cos \theta) \\ \csc \theta=(1)/(\sin \theta) \\ \sec \theta=(1)/(\cos \theta) \\ \cot \theta=(\cos\theta)/(\sin\theta)=(1)/(\tan \theta) \end{gathered}

We are given:


\sin \theta=(6)/(11)

From the first identity, solve for the cosine:


\cos \theta=√(1-\sin^2\theta)

Substituting:


\begin{gathered} \cos \theta=\sqrt[]{1-((6)/(11))^2} \\ \cos \theta=\sqrt[]{1-(36)/(121)} \\ \cos \theta=\sqrt[]{(121-36)/(121)} \\ \cos \theta=\sqrt[]{(85)/(121)} \\ \cos \theta=\frac{\sqrt[]{85}}{11} \end{gathered}

Calculate the tangent:


\begin{gathered} \tan \theta=\frac{(6)/(11)}{\frac{\sqrt[]{85}}{11}} \\ \tan \theta=\frac{6}{\sqrt[]{85}} \\ \text{Rationalizing:} \\ \tan \theta=\frac{6}{\sqrt[]{85}}\cdot\frac{\sqrt[]{85}}{\sqrt[]{85}} \\ \tan \theta=\frac{6\sqrt[]{85}}{85} \end{gathered}

Calculate the cosecant:


\begin{gathered} \csc \theta=(1)/((6)/(11)) \\ \csc \theta=(11)/(6) \end{gathered}

Calculate the secant:


\begin{gathered} \sec \theta=\frac{1}{\frac{\sqrt[]{85}}{11}} \\ \sec \theta=\frac{11}{\sqrt[]{85}} \\ \text{Rationalizing:} \\ \sec \theta=\frac{11}{\sqrt[]{85}}\cdot\frac{\sqrt[]{85}}{\sqrt[]{85}} \\ \sec \theta=\frac{11\sqrt[]{85}}{85} \end{gathered}

Finally, calculate the cotangent:


\begin{gathered} \cot \theta=\frac{\frac{\sqrt[]{85}}{11}}{(6)/(11)} \\ \cot \theta=\frac{\sqrt[]{85}}{6} \end{gathered}

User Llighterr
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories