178k views
3 votes
I’m supposed to prove this but it doesn’t work for me help

I’m supposed to prove this but it doesn’t work for me help-example-1

1 Answer

5 votes

we have the equation


(cotx+tanx)^2=csc^2x+sec^2x

Remember that


\begin{gathered} tan^2x+1=sec^2x \\ cot^2x+1=csc^2x \end{gathered}
\begin{gathered} tanx=(sinx)/(cosx) \\ \\ cotx=(cosx)/(sinx) \end{gathered}

substitute


(cotx+tanx)^2=((cosx)/(sinx)+(sinx)/(cosx))^2=((cos^2x+sin^2x)/(sinxcosx))^2=((1)/(sinxcosx))^2=(cscxsecx)^2

and


(cscxsecx)^2=csc^2x*sec^2x

substitute the identity


csc^2x*sec^2x=(cot^2x+1)(tan^2x+1)=cot^2xtan^2x+cot^2x+tan^2x+1)=sec^2x+csc^2x

Remember that


cot^2xtan^2x=1

therefore


sec^2x+csc^2x=sec^2x+csc^2x\text{ -----> is proved}

User Quran
by
3.4k points