131,538 views
2 votes
2 votes
If A=(7.4,-3) and B(-4,457), find ||AB||. Round to 3 decimal place

1 Answer

1 vote
1 vote

If A = (7, 4, -3) and B = (-4, 4, 7) represented by (x, y, z), it is 3- dimensional.


\parallel AB\parallel\text{ =}\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2_{}}
\begin{gathered} \parallel AB\parallel=\sqrt[]{(-4_{}-7_{})^2+(4_{}-4)^2+(7_{}-(-3)_{})^2_{}} \\ \parallel AB\parallel=\sqrt[]{(-11_{})^2+(0)^2+(10)^2_{}} \\ \parallel AB\parallel=\sqrt[]{121^{}+0^2+100} \\ \parallel AB\parallel=\sqrt[]{221} \\ \parallel AB\parallel=\text{ 14.866 (to 3 decimal places)} \end{gathered}

Therefore, the norm is 14.866 to 3 decimal places.

User Keir Nellyer
by
3.0k points