132k views
2 votes
If A=(7.4,-3) and B(-4,457), find ||AB||. Round to 3 decimal place

1 Answer

1 vote

If A = (7, 4, -3) and B = (-4, 4, 7) represented by (x, y, z), it is 3- dimensional.


\parallel AB\parallel\text{ =}\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2_{}}
\begin{gathered} \parallel AB\parallel=\sqrt[]{(-4_{}-7_{})^2+(4_{}-4)^2+(7_{}-(-3)_{})^2_{}} \\ \parallel AB\parallel=\sqrt[]{(-11_{})^2+(0)^2+(10)^2_{}} \\ \parallel AB\parallel=\sqrt[]{121^{}+0^2+100} \\ \parallel AB\parallel=\sqrt[]{221} \\ \parallel AB\parallel=\text{ 14.866 (to 3 decimal places)} \end{gathered}

Therefore, the norm is 14.866 to 3 decimal places.

User Keir Nellyer
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories