Answer:
Given that,
When Ayla plays darts the chances that she hits bulls eye is 0.5.
To find: The chances that three darts fired in succession will all hit bulls eye.
Consider p be the probability of success.
Here,
p=0.5
q be the probability of failure,
![q=1-p=1-0.5=0.5](https://img.qammunity.org/2023/formulas/mathematics/college/bcumj27q822ovuxcjnpfn5gst6a2hkmge7.png)
By binomial distribution, we have that,
![P(X=x)=nC_xp^xq^(n-x)](https://img.qammunity.org/2023/formulas/mathematics/college/290z1y3embinvi2y6b0qy6fu3zmbkers4i.png)
where n is the number of times the event is repeated and x is the number of favorable outcomes.
Here, n=3, we get
![P(X=x)=3C_xp^xq^(3-x)](https://img.qammunity.org/2023/formulas/mathematics/college/suvx34sfzakxevatu8kw7pm04zz7515cr8.png)
Here, x=3, we get,
![P(X=3)=3C_3p^3q^0](https://img.qammunity.org/2023/formulas/mathematics/college/orej9h5vy266nqqufr2fsrzcjptdenqg53.png)
![=(0.5)^3=0.125](https://img.qammunity.org/2023/formulas/mathematics/college/6br2jpc1yqy5vs1au6jux67xz0m2hxwuct.png)
The required probability is 0.125.
2)To find the probability that none will hit.
Here, x=0, substitute the value in P(X=x), we get
![P(X=0)=3C_0p^0q^3](https://img.qammunity.org/2023/formulas/mathematics/college/3simpx2v8le6uhayozbrajaapp31ukv5ni.png)
![=(0.5)^3=0.125](https://img.qammunity.org/2023/formulas/mathematics/college/6br2jpc1yqy5vs1au6jux67xz0m2hxwuct.png)
The required probability is 0.125.
3) To find the probability that a least one dart will hit.
Here, to find P(X>0), we get,
![P(X>0)=P(X=1)+P(X=2)+P(X=3)](https://img.qammunity.org/2023/formulas/mathematics/college/w7y3lobsonrgo7j8wh8l33mprbljnz5lk5.png)
Substitute the values we get,
![=3C_1(0.5)(0.5)^2+3C_2(0.5)^2(0.5)+(0.5)^3](https://img.qammunity.org/2023/formulas/mathematics/college/dxft1d4izyayo09rdfxen5r6fp8388o4ax.png)
![=3(0.5^)^3+3(0.5)^3+(0.5)^3](https://img.qammunity.org/2023/formulas/mathematics/college/r3q3mta5w9ukrdsjtbiwygyuauuo5o5nab.png)
![=0.75+0.125](https://img.qammunity.org/2023/formulas/mathematics/college/m26i5rg7yzvjevea9ghlwxguiwa9rx226k.png)
![=0.875](https://img.qammunity.org/2023/formulas/mathematics/college/nuyhs7mxhckmjd2ancwm9qfc53kucesu9l.png)
The required probability is 0.875