There are two possible solutions for the triangle. For both, we can use the Law of sines.
![(\sin (A))/(a)=(\sin (B))/(b)=(\sin (C))/(c)\Rightarrow\text{ Law of sines}](https://img.qammunity.org/2023/formulas/mathematics/college/53smztglpmrvvqaau6t6on5c22x9xlzqgw.png)
Then, we have:
![\begin{gathered} a=97 \\ b=52 \\ B=28\text{\degree} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qq4f3nel5fv74tc0q4d4m9etomjgg7fs5g.png)
First possible solution
We find the angle A:
![\begin{gathered} (\sin(A))/(a)=(\sin(B))/(b) \\ (\sin(A))/(97)=(\sin(28))/(52) \\ \text{ Multiply by 97 from both sides of the equation} \\ (\sin(A))/(97)\cdot97=(\sin(28))/(52)\cdot97 \\ \sin (A)=(97\sin(28))/(52) \\ \sin (A)=0.8757 \\ \text{ We apply the inverse function }\sin ^(-1)(x)\text{ from both sides of the equation} \\ \sin ^(-1)(\sin (A))=\sin ^(-1)(0.8757) \\ A\approx61.1\text{\degree} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dc4ntd3bo7crjt8a8wr16br5i9fbxrd1hk.png)
We find the angle C using the angle sum theorem, which says that the sum of measures of interior angles of a triangle is 180°.
![\begin{gathered} A+B+C=180\text{\degree} \\ 61.1\text{\degree}+28\text{\degree}+C=180\text{\degree} \\ 89.1\text{\degree}+C=180\text{\degree} \\ \text{ Subtract 89.1\degree from both sides} \\ 89.1\text{\degree}+C-89.1\text{\degree}=180\text{\degree}-89.1\text{\degree} \\ C=90.1\text{\degree} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mp1d8f5qn7o4vm3kkxlxo3sa0w7ssg6o7k.png)
We find the side c:
![\begin{gathered} (\sin(B))/(b)=(\sin(C))/(c) \\ \frac{\sin(28\text{\degree})}{52}=\frac{\sin(90.1\text{\degree})}{c} \\ \text{ Apply cross product} \\ \sin (28\text{\degree})\cdot c=\sin (90.1\text{\degree})\cdot52 \\ \text{ Divide by }\sin (28\text{\degree})\text{ from both sides} \\ \frac{\sin (28\text{\degree})\cdot c}{\sin (28\text{\degree})}=\frac{\sin (90.1\text{\degree})\cdot52}{\sin (28\text{\degree})} \\ c\approx110.8\text{\degree} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1hdzm4n3ga3u2copxj82v9csrtcqa1viq3.png)
Second possible solution
We find the angle A:
![\begin{gathered} (\sin(A))/(a)=(\sin(B))/(b) \\ (\sin(A))/(97)=(\sin(28))/(52) \\ \text{ Multiply by 97 from both sides of the equation} \\ (\sin(A))/(97)\cdot97=(\sin(28))/(52)\cdot97 \\ \sin (A)=(97\sin(28))/(52) \\ \sin (A)=0.8757 \\ \text{ We apply the inverse function }\sin ^(-1)(x)\text{ from both sides of the equation and we subtract this value from 180\degree} \\ 180\text{\degree}-\sin ^(-1)(\sin (A))=180\text{\degree}-\sin ^(-1)(0.8757) \\ A\approx180\text{\degree}-61.1\text{\degree} \\ A\approx118.9\text{\degree} \end{gathered}]()
We find the angle C using the angle sum theorem:
![\begin{gathered} A+B+C=180\text{\degree} \\ 118.9\text{\degree}+28\text{\degree}+C\approx180\text{\degree} \\ 146.9\text{\degree}+C\approx180\text{\degree} \\ \text{ Subtract 146.9\degree{}from both sides} \\ 146.9\text{\degree}+C-146.9\text{\degree}\approx180\text{\degree}-146.9\text{\degree} \\ C\approx33.1\text{\degree} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3bbxgxf1bqlviiccx919darg7dluacyh7o.png)
We find the side c:
![\begin{gathered} (\sin(B))/(b)=(\sin(C))/(c) \\ \frac{\sin(28\text{\degree})}{52}=\frac{\sin(90.1\text{\degree})}{c} \\ \text{ Apply cross product} \\ \sin (28\text{\degree})\cdot c=\sin (90.1\text{\degree})\cdot52 \\ \text{ Divide by }\sin (28\text{\degree})\text{ from both sides} \\ \frac{\sin (28\text{\degree})\cdot c}{\sin (28\text{\degree})}=\frac{\sin (90.1\text{\degree})\cdot52}{\sin (28\text{\degree})} \\ c\approx110.8\text{\degree} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1hdzm4n3ga3u2copxj82v9csrtcqa1viq3.png)