Given:
The scale from a playground to a scale drawing of the playground is 4 meters per centimeter.
The length of the playground= 5.3 cm.
The width of the playground = 3.8cm.
To find:
We need to find the area of the actual playground.
Step-by-step explanation:
The given ratio is
![4m\colon1cm](https://img.qammunity.org/2023/formulas/mathematics/college/gj3cw7kngfun16xn4owejjti9tlahb97pk.png)
The length of the actual playground is
![=5.3*4m](https://img.qammunity.org/2023/formulas/mathematics/college/d5dzakn5h0sqp2lvbecju2xa9o05f83d65.png)
![=21.2m](https://img.qammunity.org/2023/formulas/mathematics/college/lisl419etnhez6uw4nvvcsb171snyrwusg.png)
The length of the actual playground is l= 21.2m.
The width of the actual playground is
![=3.8*4m](https://img.qammunity.org/2023/formulas/mathematics/college/60ibsahr234j76a93iejcyo0pj6kxr9b3j.png)
![=15.2m](https://img.qammunity.org/2023/formulas/mathematics/college/et2ev5ze73p6lb11t87ev9n3uhb1d9n3al.png)
The width of the actual playground is w = 15.2m.
Consider the area of the rectangle.
![A=lw](https://img.qammunity.org/2023/formulas/mathematics/college/1uev9eqrb6cie54zfnubw0e3j6pmkw3cu2.png)
Substitute l=21.2 and w=15.2 in the formula.
![A=21.2*15.2](https://img.qammunity.org/2023/formulas/mathematics/college/1x2w5c3vqscuccrcz6k10f0mcdxa04gn4j.png)
![A=322.24m^2](https://img.qammunity.org/2023/formulas/mathematics/college/m8ewksksm8dhgcbwi6bosjsfi3qd8qeolg.png)
Final answer:
The area of the actual playground is 322.24 square meters.