Hello there. To solve this question, we'll have to remember some properties about convergence of series.
Starting by the fact that for a given series:
![\sum ^(\infty)_(n=0)a_n](https://img.qammunity.org/2023/formulas/mathematics/college/xvdcl1vcq3c48q2emub6ktm8ci0e92a86v.png)
We always take the limit to see whether or not:
![\lim _(n\to\infty)a_n=0](https://img.qammunity.org/2023/formulas/mathematics/college/puk0arlrngxd8core4wf7kqji9nbkyk330.png)
But in this case, we have to use the ratio test. Given two elements of the sequence we're adding the terms:
![\mleft\lbrace a_1,_{}a_2,\ldots,a_n,a_(n+1),\ldots,a_k\mright\rbrace_{}](https://img.qammunity.org/2023/formulas/mathematics/college/8mbkmnfx2qyi7uufdat6pt69v8c719nubi.png)
We say that for the following limit:
![\lim _(n\to\infty)\left|(a_(n+1))/(a_n)\right|=L](https://img.qammunity.org/2023/formulas/mathematics/college/chw6wd3zgvfcmv3rjjk2ugji7hrrncrmeg.png)
If L > 1, the series diverges by the ratio test.
If L = 1, the test is inconclusive.
If L < 1, the series converges by the ratio test.
In this case, the series is:
![(1)/(3^1)^{}+(2)/(3^2)+(3)/(3^3)+\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/iolk863489nmdgvjrwlxxvr6ni6wt34nnr.png)
In which we can suppose that the general term is:
![a_n=\frac{n}{3^{n^{}}},n\ge1](https://img.qammunity.org/2023/formulas/mathematics/college/j7f1cltxncvd27n9tk8tw6144716seez2y.png)
Hence we know that
![a_(n+1)=(n+1)/(3^(n+1)),n\ge1](https://img.qammunity.org/2023/formulas/mathematics/college/i0vg5j04grymlxb0anj8nia93ncay1vg1d.png)
Now plugging in these terms in the ratio test, we have:
![\lim _(n\to\infty)\left|((n+1)/(3^(n+1)))/((n)/(3^n))\right|](https://img.qammunity.org/2023/formulas/mathematics/college/gghn2g005a3wawrjupyiil2le3hm6b6n25.png)
Knowing that:
![((a)/(b))/((c)/(d))=(a\cdot d)/(b\cdot c)](https://img.qammunity.org/2023/formulas/mathematics/college/u28d2obza2tqan65ocjpgdbp7lduqm7kma.png)
We have:
![\lim _(n\to\infty)\mleft|((n+1)\cdot3^n)/(3^(n+1)\cdot n)\right|\mright.](https://img.qammunity.org/2023/formulas/mathematics/college/miktcza4e5h4g5kqcl7jfb8zo6e4kx23zl.png)
In which we can simplify the fraction by a factor 3^n
![undefined]()