hello
to solve this question, we can simply use the theorem "angle on a straight line is equal to 180 degrees"
for the first polygon
to solve for x, y and z, we should simply subtract the adjacent interior angle from 180 degrees
![\begin{gathered} x+61=180 \\ x=180-61=119 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t3mrwf4o6idtemlpecu0ddb98aciiymeva.png)
![\begin{gathered} y+79=180 \\ y=180-79 \\ y=101 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aeqx7qz3la03rjed9wl3gmv5psr7mgdbuy.png)
![\begin{gathered} z+40=180 \\ z=180-40 \\ z=140 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k000jrb1sczzcomch5lyozmti55i1krny3.png)
sum of exterior angles is
![119+101+140=360](https://img.qammunity.org/2023/formulas/mathematics/college/k067rulb8b3crgl467subt4jwl0angvf98.png)
now we can proceed to the next polygon
now we can simply use the previous method for the last one
![\begin{gathered} a+124=180 \\ a=180-124=56 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f8qsbzns8amr17fpq1p7v68pejazy49y93.png)
![\begin{gathered} b+76=180 \\ b=180-79 \\ b=104 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p5ke1m509hb6ne95ciatnpe0ikadhvpbta.png)
![\begin{gathered} c+89=180 \\ c=180-89 \\ c=91 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1pczysvlldvnb5elrg0k35eag5rr0ttzc5.png)
![\begin{gathered} d+71=180 \\ d=180-71 \\ d=109 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2xlburgp570bphn4d2wr4ukuqwjr419w3j.png)
the sum of the exterior angles is
![56+104+91+109=360](https://img.qammunity.org/2023/formulas/mathematics/college/p1n01q09mbqdgtty8hyq0kyzgpohchitrz.png)
the next polygon is
then we proceed with the same method we've used before
![\begin{gathered} 98+a=180 \\ a=180-98 \\ a=82 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x8wg1j93mnlqq13ke4owy70ianf93ry4hc.png)
![\begin{gathered} b+121=180 \\ b=180-121 \\ b=59 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bk375u3yk5oyc23ri114ec8z7rp08285wa.png)
![\begin{gathered} c+87=180 \\ c=180-87 \\ c=93 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ysoah6ubnekrmcwpdskqe6elv8bd6ptg5e.png)
![\begin{gathered} d+130=180 \\ d=180-130 \\ d=50 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i0v7xozx7f13lc7usjh2shbepgiytfwih3.png)
![\begin{gathered} e+104=180 \\ e=180-104 \\ e=76 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ycdnd59l9wrth7bxoq769mpgng48g4qa22.png)
the sum of the exterior angles is
![82+59+93+50+76=360_{}](https://img.qammunity.org/2023/formulas/mathematics/college/ovzhomgj5n69odwibf7mbf2heayjou2xev.png)
now we can solve for the last polygon
we can proceed to solve this through the previous method
![\begin{gathered} a+129=180 \\ a=180-129 \\ a=51 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/af7nxbxyzxnqmu2063b70zzucozykt5f0f.png)
![\begin{gathered} b+124=180 \\ b=180-124 \\ b=56 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5q6czcpjb61g7nglbg6nkkkvl9ureb6tro.png)
![\begin{gathered} c+112=180 \\ c=180-112 \\ c=68 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oeh4vwy5x8jmvslojuhpcvqir1ucnwz89y.png)
![\begin{gathered} d+123=180 \\ d=180-123 \\ d=57 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/91z08gr81di990iph7ewu4tz3ivykro8mi.png)
![\begin{gathered} e+117=180 \\ e=180-117 \\ e=63 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dawbmrf5xe6b8yxc9mnh7dpt98zp21ekb5.png)
![\begin{gathered} f+115=180 \\ f=180-115 \\ f=65 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/559cp71pxt16mac68ln1edmuh7f1vpxecq.png)
the sum of the exterior polygons is
![51+56+68+57+63+65=360](https://img.qammunity.org/2023/formulas/mathematics/college/xprw3lyncfwk24qmnztbaz565gy3b669sq.png)
the sum of all the exterior angles of a regular polygon is equal to 360 degrees