To solve this problem, we will compute the surface area of one cone and multiply it by 3.
Recall that the surface area of a cone is given by:
![SA=πr\left(r+√(h^2+r^2)\right),](https://img.qammunity.org/2023/formulas/mathematics/college/5nehwd54befb9n5mz3cvfattukdveybjzs.png)
where r is the radius of the cone, and h is its height.
Now, in the given problem:
![\begin{gathered} r=(5.2)/(2)in=2.6in, \\ h=10\text{ in.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n2gz4z6pjnrm5bpb0be7b9ccj1xtv34r9m.png)
Therefore, the surface area of one cone is:
![SA=3.14(2.6in)(2.6in+√((2.6in)^2+(10in)^2).](https://img.qammunity.org/2023/formulas/mathematics/college/hcr3x83mlna441l581niyduarajk5zgwjt.png)
Simplifying the above result, we get:
![SA=105.5807102in^3.](https://img.qammunity.org/2023/formulas/mathematics/college/zunnjif740crtmmrq8thobp7n78sha6ebf.png)
Finally, multiplying the above result by 3, we get:
![316.7421307in^3.](https://img.qammunity.org/2023/formulas/mathematics/college/8covlt30x56vo12h2vn77fe5th736snhd1.png)
Answer:
![316.7421307\imaginaryI n^3](https://img.qammunity.org/2023/formulas/mathematics/college/go6dqmtmmud3i3l0m6995pub6bfgf0tu86.png)