We have a deposit of $4000 at the end of each year.
The rate is 5% compounded annually (r = 0.05).
The number of periods is n = 10.
We have to calculate the present value of the annuity.
We will use the formula:
![PV=C\cdot(1-(1+r)^(-n))/(i)](https://img.qammunity.org/2023/formulas/mathematics/college/6po1penrojk90fq5p695hhujnn92ez8xva.png)
If we replace with our data, we get:
![\begin{gathered} PV=4000\cdot(1-(1+0.05)^(-10))/(0.05) \\ PV=4000\cdot(1-1.05^(-10))/(0.05) \\ PV=4000\cdot(1-(1)/(1.05^(10)))/(0.05) \\ PV=4000\cdot7.72173492918481251283 \\ PV\approx30887 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w7g77r3ad8e1dkyh4veri9edmnf37jmusj.png)
Now, we have to calculate the interest.