We are given that the height of an object that is moving in projectile motion is the following:
![S=-16t^2+v_0t](https://img.qammunity.org/2023/formulas/physics/college/l6hfncz8ipp0ldsc4oaqli4v3bcxja414y.png)
Where:
![\begin{gathered} S=\text{ height} \\ t=\text{ time} \\ v_0=\text{ initial velocity} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/vxqbbnx9i07qi4fgply7wtsgpxlt6rnnyn.png)
Now we will substitute the value of S for 272 ft, we get:
![272=-16t^2+v_0t](https://img.qammunity.org/2023/formulas/physics/college/q2qpgd2jj110so9hc3rspanxduc4azt0ha.png)
Now we subtract 272 from both sides, we get:
![-16t^2+v_0t-272=0](https://img.qammunity.org/2023/formulas/physics/college/dx8944zj2b5592gcwmknxnrr8libkxz513.png)
We get an equation of the form:
![at^2+bt+c=0](https://img.qammunity.org/2023/formulas/physics/college/61xtjchhy8zd8i6f8jprgvhl0j59kz22hw.png)
The value of "t" are determined using the quadratic formula:
![t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/3cgw61gskglny4a505tle5b9wokluktv58.png)
Substituting the values we get:
![t=\frac{-v_0\pm\sqrt[]{v^2_0-4(-16)(-272)}}{2(-16)}](https://img.qammunity.org/2023/formulas/physics/college/xgpoqm33m6lc81dl9rmz59ubg170fiutr4.png)
Solving the operations we get:
![t=\frac{-v_0\pm\sqrt[]{v^2_0-17408}}{-32}](https://img.qammunity.org/2023/formulas/physics/college/xo8kdxg8nm0xidi9kisedjpmaga3lqhpgp.png)
Therefore, we get two possible values for the time:
![t_1=\frac{-v_0+\sqrt[]{v^2_0-17408}}{-32}](https://img.qammunity.org/2023/formulas/physics/college/dfai0gm0iyoqh93w8xe0x6w0yk2s3jtk9g.png)
The second value is:
![t_2=\frac{-v_0-\sqrt[]{v^2_0-17408}}{-32}](https://img.qammunity.org/2023/formulas/physics/college/i9byjdug13l5izzkacpmknikon3prnghow.png)
Part b. We are asked to determine the time when the object returns to the ground and the initial velocity is 32 ft/s. To do that we will use the formula for the height:
![S=-16t^2+v_0t](https://img.qammunity.org/2023/formulas/physics/college/l6hfncz8ipp0ldsc4oaqli4v3bcxja414y.png)
Now we substitute the value of the initial speed:
![S=-16t^2+32t](https://img.qammunity.org/2023/formulas/physics/college/jeilj76di4geq9xdt256t8uawwsuiocdyj.png)
Now, since we want the time when the object returns to the ground this means that the height must be zero, therefore, we substitute the values S = 0, we get:
![0=-16t^2+32t](https://img.qammunity.org/2023/formulas/physics/college/obvlgpkbw3k1yctyjdeyp19fpqup7wwloo.png)
Now we take "t" as a common factor:
![0=t(-16t+32)](https://img.qammunity.org/2023/formulas/physics/college/p8ltin8vq4qqsbngbn0ld2grcjgamohe50.png)
Now we set each factor to zero:
![t=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/hjl3uyxgb078iujqg67x1b4lz4s6l3i8vf.png)
For the second factor we get:
![-16t+32=0](https://img.qammunity.org/2023/formulas/physics/college/qph0g3rzggvenjyxzxqvze5elehbu5amm9.png)
Now we subtract 32 from both sides:
![-16t=-32](https://img.qammunity.org/2023/formulas/physics/college/bxdjq7rsik0fdmo075uzzcjboc84tonjs1.png)
Now we divide both sides by -16:
![t=-(32)/(-16)](https://img.qammunity.org/2023/formulas/physics/college/eixi4ou6lnwyqp9xfgaiorqhasikhq2hyv.png)
Solving the operations:
![t=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/wjmfi947s9q4grbs2xl06e4wxtswh0382d.png)
Therefore, in 2 seconds the object will return to the ground.