The area of a triangle is given by the expression:

Where b is the basis and h is the height.
Then, in the case of our problem:
![(1)/(2)b\cdot h=36\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/sqwebe76m5zn5xzrhosn9yslkhf307e6od.png)
There is something particular of the equilateral triangles, see the diagram below:
Notice that we can use trigonometric identities to find an expression that involves the length of a side and the height.
We can use the sine function

Furthermore, the exact value of sin(60°) is sqrt(3)/2
![\sin (60degree)=\frac{\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/894xgkete5htwg1j88j8atuobenrnwwl0f.png)
Therefore:
![\begin{gathered} \frac{\sqrt[]{3}}{2}=(h)/(b) \\ \Rightarrow b=\frac{h}{\frac{\sqrt[]{3}}{2}}=\frac{2h}{\sqrt[]{3}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zq26ufqgl5tngme8vj5cwqjltsbc6gp7lj.png)
Finally, we can substitute this last result in the equation for the area of the triangle:
![\begin{gathered} (1)/(2)b\cdot h=36\sqrt[]{3} \\ \Rightarrow(1)/(2)(\frac{2h}{\sqrt[]{3}})\cdot h=36\sqrt[]{3} \\ \Rightarrow h^2=\frac{2\cdot\sqrt[]{3}}{2}(36\sqrt[]{3}) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhh3pfzj2a4aa2zreehy8ifcoxhw7bqfgk.png)
We only need to simplify and solve for h, as shown below:
![\begin{gathered} \Rightarrow h^2=36\cdot3 \\ \Rightarrow h=\sqrt[]{36\cdot3}=6\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l3x1jkom6wcys0iouema03acwuj3vllfvk.png)
The solution is then h=6*sqrt(3), option C
Explanation for sin(60°)=sqrt(3)/2
Actually, we can use an equilateral triangle which basis is equal to 1 to prove this:
The blue line is the height, and notice that it crosses the basis in the middle, so the orange segment is equal to 1/2. We can then use the Pythagoras Theorem to find the value of the blue segment:
![\begin{gathered} x^2+((1)/(2))^2=1^2=1 \\ \Rightarrow x=\sqrt[]{1-(1)/(4)}=\sqrt[]{(3)/(4)}=\frac{\sqrt[]{3}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/svdfbdwecmtnu4kxrt709xamy14jj9cqgm.png)
Furthermore, we know that the identity sin(theta)=O/H, then:
![\sin (60degree)=(O)/(H)=\frac{\frac{\sqrt[]{3}}{2}}{1}=\frac{\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/o52xf30y9puiofft9z6kf2r18xx8gprnu9.png)