To determine the value of t in a given function:
![h=2+30t-16t^2](https://img.qammunity.org/2023/formulas/mathematics/college/ddibxcrt0946g6en0zgxx8kr3g9vb0cpl7.png)
The ball’s height h (in feet) after t seconds is given by the following.
![\begin{gathered} h=2+30t-16t^2 \\ \text{where h = height =10 f}eet \\ 10=2+30t-16t^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/itn10wm0b49m86t93z461aibzbglc0zywg.png)
Collect like terms and Solve using formular method
![\begin{gathered} 16t^2-30t+8=0 \\ \frac{-b\pm\sqrt[]{b^2}-4ac}{2a} \\ a=16\text{ , b = -30 , c = 8} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dyik8upj71isau82avwpiutqtfxil8fvlk.png)
![\begin{gathered} t=\frac{-b\pm\sqrt[]{b^2}-4ac}{2a}=\frac{--30\pm\sqrt[]{(-30)^2-4(16)(8)}}{2(16)} \\ t=\frac{30\pm\sqrt[]{900-512}}{32}=\frac{30\pm\sqrt[]{388}}{32}=(30\pm19.69)/(32) \\ t=(30+19.69)/(32)\text{ OR }(30-19.69)/(32) \\ t=\text{ 1.553 or 0.322} \\ t=1.55\text{ or 0.32 (nearest hundredth)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ok30cpp884nf8ao7qop82n0u7nq4capl8y.png)
Therefore the values of t for ball’s height is 10 feet are t = 1.55 or 0.32 (nearest hundredth)