Solution
Step 1:
Write the mid-point formula
![Coordinates\text{ of the mid-point = \lparen}(x_1+x_2)/(2),(y_1+y_2)/(2)\text{\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/89kwzil44r1zb2dvog4sxjt56xsic7utj6.png)
Step 2:
W is a midpoint of OR
Coordinate of 0 = (0,0) and thw coordinate of R = (4a,4b)
![\begin{gathered} Coordinates\text{ of W = \lparen x, y\rparen} \\ \text{x = }\frac{4a\text{ + 0}}{2}\text{ = }(4a)/(2)\text{ = 2a} \\ y\text{ = }\frac{4b\text{ + 0}}{2}\text{ = }(4b)/(2)\text{ = 2b} \\ Coordinates\text{ of W = \lparen2a , 2b\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a8e083kijge89l0hi3yec0bxiv6dbobt1p.png)
Step 3:
Z is the mid-point of TS
Coordinates of T = (4e, 0) and the coordinates of S = (4c, 4d)
![\begin{gathered} Coordinates\text{ of Z = \lparen x, y\rparen} \\ \text{x = }\frac{4c\text{ + 4e}}{2}\text{ = 2c + 2e} \\ y\text{ = }\frac{4d\text{ + 0}}{2}\text{ = }(4d)/(2)\text{ = 2d} \\ Coordinates\text{ of Z = \lparen2c+2e, 2d\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ongvsji9r4hxx26zyzfvg12fjd1fq8j440.png)
Final answer
c. W (2a , 2b) , Z (2c + 2e, 2d)