![\begin{gathered} \text{domain: x }\epsilon R_{} \\ range\colon y\ge-(9)/(4) \\ \text{extrrema: 18} \\ \text{zeros} \\ x=3,\text{ x=6} \\ y-intercept\colon18 \\ \text{decreasing}(-\infty,4.5) \\ \text{ increasing:(4.5,}\infty) \\ \text{ inflection at x=4.5} \\ \text{continuos for all x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/msmdf9zjut99y0mmvp6qmaomm8umxjn857.png)
Step-by-step explanation
![f(x)=x^2-9x+18](https://img.qammunity.org/2023/formulas/mathematics/college/9ef0azkglznhbbqz6fwr8yforks2gwtse4.png)
Step 1
a)Domain:
The domain of a function is the set of all possible inputs for the function, in other words, the values that x can take, so
there is no restriction for this function, hence, the domain is all real numbers
![\text{Domain:(-}\infty,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/kk35av16hvfsh6uikrftssxfodwdyb2vvf.png)
b)Range: is the set of all possible values that the function will give when we give in the domain as input
to know the range of a quadratic equation, do
a) set the function equals zero
![\begin{gathered} y=x^2-9x+18 \\ x^2-9x+18-y=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hibysh6elsu961htt77j00whqk0liri4wy.png)
now, we need to solve for x, use the quadratic formula
let
![\begin{gathered} x^2-9x+18-y=0\rightarrow ax^2+bx+c \\ so \\ a=1 \\ b=-9 \\ c=18-y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ub2w4j3z1jdimgzb4okaiw0eusiivwnq6e.png)
apply the formula
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-(-9)\pm\sqrt[]{(-9)^2-4(1)(18-y)}}{2\cdot1} \\ x=\frac{+9\pm\sqrt[]{81-72+4y}}{2} \\ x=\frac{+9\pm\sqrt[]{9+4y}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ogg0pwmj2d90lzzsex7laldd1gj68jdehc.png)
now, this has solution only if the value insides the roor sign, is greater or equal than zero,so
![\begin{gathered} 9+4y\ge0 \\ \text{subtract 9 in both sides} \\ 9+4y-9\ge0-9 \\ 4y\ge-9 \\ \text{divide both sides by 4} \\ (4y)/(4)\ge-(9)/(4) \\ y\ge-(9)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z3x2q54fste9868oe3crwybja65fl82vb2.png)
hence, the range is
![\begin{gathered} y\ge-(9)/(4) \\ \lbrack-(9)/(4),\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/poxaq9wo8l5v060efgwk4f6azrxkrilnn2.png)
Step 2
extremes A quadratic function f(x)=ax2+bx+c has an extreme value at its vertex, so if a>0 , then f(−ba) is the maximum, and if a<0
so
![\begin{gathered} f(x)=x^2-9x+18 \\ a=1 \\ -ba=-(-9)\cdot1=9 \\ f(-ba)=9^2-9\cdot9+18 \\ f(-ba)=81-81+18 \\ f(-ba)=18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ek2fgxx1rm7l453decdaxhgdywxszuaw3.png)
so, extrema=18
Zeros: the zeros of a function is the values where the line intersect the y and x-axis, so
a) set the function to zero and solve
![\begin{gathered} x^2-9x+18=0 \\ x=\frac{-(-9)\pm\sqrt[]{(-9)^2-4\cdot1\cdot18}}{2\cdot1} \\ x=\frac{9\pm\sqrt[]{81-72}}{2} \\ x=\frac{9\pm\sqrt[]{9}}{2} \\ x=(9\pm3)/(2) \\ x_1=(9+3)/(2)=(12)/(2)=6 \\ x_2=(9-3)/(2)=(6)/(2)=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fnfskj6g9nz9oyrxba4eeovkjsjl3e17lj.png)
hence, the graph intersectsmy p the x axis at, x= 3 and x= 6
now, the y -intercetp is when the line intersecnt the y -axis, it ocurrs when x= 0, so evalute at x=0
![\begin{gathered} f(x)=x^2-9x+18 \\ f(0)=0^2-9\cdot0+18 \\ f(0)=0-0+18 \\ f(0)=18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5b63pbsomesawwpp86k3ehk38ll9wtls1o.png)
it means, the graph intersect the y-axis at y=18
y-intercept:18
Step 3
increasing and decreasing
a) derivate the function and equals to zero
![\begin{gathered} f(x)=x^2-9x+18 \\ y=x^2-9x+18 \\ y^(\prime)\text{ =2x-9} \\ 2x-9=0 \\ 2x=9 \\ x=(9)/(2) \\ x=4.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/skthvhgnu65cgtfkylteqrskbncfb9qjsi.png)
it means the inflection point is x=4.5
b) now, get the second derivate of the function to check its behavior ( if y'' is greater than zero, the function open upwards)
![\begin{gathered} y^(\prime)\text{ =2x-9} \\ y^(\doubleprime)=\text{ 2} \\ 2>0,\text{ so the graph open upwards} \end{gathered}]()
hence
![\begin{gathered} \text{decreasing}(-\infty,4.5) \\ \text{ increasing:(4.5,}\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3w2h1bg4h3e5b3mai9ifrodgzraiveinhn.png)
c) Continuity:
as the domain is all the real numbers the function is totally continuos
I hope this helps you