17.6k views
1 vote
Please simplify this log I really really need the answer asap

Please simplify this log I really really need the answer asap-example-1
User Lucas
by
5.4k points

1 Answer

1 vote

step 1

Simplify the interior expression in the log

so

we have


\frac{\frac{(a^2g^7z^8)/(b^((12))d^((45)))}{\sqrt[3]{xy}z^((23))}}{(w^2p^5)/((√(r)tv^7)/(b))}
\frac{\frac{(a^(2)g^(7)z^(8))/(b^((12))d^((45)))}{\sqrt[3]{xy}z^((23))}}{(w^2p^5)/((√(r)tv^7)/(b))}\frac{}{}=\frac{(a^2g^7z^8)/(b^((12))d^((45)))}{\sqrt[3]{x}yz^((23))}/(w^2p^5)/((√(r)tv^7)/(b))=\frac{(a^2g^7z^8)/(b^((12))d^((45)))*(√(r)tv^7)/(b)}{\sqrt[3]{x}yz^((23))*w^2p^5}
\frac{(a^(2)g^(7)z^(8))/(b^((12))d^((45)))(√(r)tv^7)/(b)}{\sqrt[3]{xy}z^((23))w^2p^5}=\frac{\frac{a^2g^7z^8r^{((1)/(2))}tv^7}{b^((13)d(45))}}{\sqrt[3]{xy}z^((23))w^2p^5}=\frac{a^2g^7z^8r^{((1)/(2))}tv^7}{b^((13))d^((45))}/\sqrt[3]{xy}z^((23))w^2p^5=\frac{a^2g^7z^8r^{((1)/(2))}tv^7}{b^((13))d^((45))\sqrt[3]{xy}z^((23))w^2p^5}
\frac{a^2g^7z^8r^((1\/2))tv^7}{b^((13))d^((45))\sqrt[3]{xy}z^((23))w^2p^5}=\frac{a^2g^7r^((1\/2))tv^7}{b^((13))d^((45))\sqrt[3]{xy}z^((15))w^2p^5}

we have the expression


log(\frac{a^2g^7r^{((1)/(2))}tv^7}{b^((13))d^((45))\sqrt[3]{xy}z^((15))w^2p^5})=log(a^2g^7r^{((1)/(2))}tv^7)-log(b^((13))d^((45))\sqrt[3]{xy}z^((15))w^2p^5)

Simplify the first term


log(a^2g^7r^{((1)/(2))}tv^7)=loga^2+logg^7+logr^{((1)/(2))}+logt+logv^7
loga^2+logg^7+logr^{((1)/(2))}+logt+logv^7=2loga+7logg+(1)/(2)logr+logt+7logv

Simplify the second term


log(b^((13))d^((45))\sqrt[3]{xy}z^((15))w^2p^5)=logb^((13))+logd^((45))+log\sqrt[3]{xy}+logz^((15))+logw^2+logp^5
logb^((13))+logd^((45))+log\sqrt[3]{xy}+logz^((15))+logw^2+logp^5=13logb+45logd+(1)/(3)logxy+15logz+2logw+5logp

Substitute in expression


\begin{gathered} log(a^2g^7r^{((1)/(2))}tv^7)-log(b^((13))d^((45))\sqrt[3]{xy}z^((15))w^2p^5) \\ (2loga+7logg+(1)/(2)logr+logt+7logv)-(13logb+45logd+(1)/(3)logxy+15logz+2logw+5logp) \end{gathered}

User ZecKa
by
5.1k points