90.3k views
3 votes
121x²+64y²+242x+256y=7376Find the center, vertices, covertices, foci, Latus rectum

1 Answer

3 votes

The given equation of the conic is:


121x^2+64y^2+242x+256y=7376

Solve as follows:


\begin{gathered} 121x^2+242x+64y^2+256y-7376=0 \\ 121(x^2+2x+1)-121+64(y^2+4y+4)-256-7376=0 \\ 121(x+1)^2+64(y+2)^2=7753 \\ ((x+1)^2)/((7753)/(121))+((y+2)^2)/((7753)/(64))=1 \end{gathered}

Graph the ellipse as shown below:

The ellipse has center at (-1,-2)

Its vertices are:


(-1,-2\pm\frac{\sqrt[]{7753}}{8})

Covertices are:


(-9.004647,2);(7.004647,2)

Focii are:


(-1,-2\pm\frac{\sqrt[]{441921}}{88})

One of the latus rectum is:


y=0.0032318937914x-9.5509884388909

121x²+64y²+242x+256y=7376Find the center, vertices, covertices, foci, Latus rectum-example-1
User Barwnikk
by
5.2k points