Given:
![x-(1)/(x)=5](https://img.qammunity.org/2023/formulas/mathematics/college/kipb6icy0an8i2j2bgj1krkzq49607xr4g.png)
Asked: Find the value of:
![x^4+(1)/(x^4)](https://img.qammunity.org/2023/formulas/mathematics/college/wihm39cx6jc0zdyuft8d5o0j59klnmh0ip.png)
Solution:
First, we need to find the value of x through the given.
![\begin{gathered} x-(1)/(x)=5 \\ (x-(1)/(x)=5)(x) \\ x^2-1=5x \\ x^2-5x-1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o5z8gd0i1aog9f04jqk6qfmjy6bep44hep.png)
We arrived with a quadratic equation so we will use this formula:
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{when }ax^2+bx+c=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6l29vqco31j4fdz65ymu4cqtbdu5eraqi0.png)
Now, let's substitute the equation we have to the formula where a = 1, b = -5 and c = -1.
![undefined]()