ANSWER
2
Step-by-step explanation
We are given the function:
f(x) = 2x - 5
We want to construct the difference quotient:
![\frac{f(x\text{ + h) - f(x)}}{h}](https://img.qammunity.org/2023/formulas/mathematics/college/13j37wnz9zoko8gppmne4fmyz2z4f3tvjd.png)
To find f(x + h), we replace x in the function with (x + h):
f(x + h) = 2(x + h) - 5
f(x + h) = 2x + 2h - 5
Therefore, the difference quotient is:
![\begin{gathered} \frac{2x\text{ + 2h - 5 - (2x - 5)}}{h} \\ \frac{2x\text{ + 2h - 5 - 2x + 5}}{h} \\ (2h)/(h) \\ \Rightarrow\text{ 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v55skqz7depohnnmvoj9yy73hmm9bj19tw.png)
That is the simplified difference quotient.