Given:
6 male professores
9 female professores
5 male teaching assistants
6 female teaching assistants
Sol:.
![N(A\text{ or B)=N(A)+N(B)-N(A and B)}](https://img.qammunity.org/2023/formulas/mathematics/college/jjdza0ssmg9teqs72goheohq571orqb5d9.png)
N (professors)
![\begin{gathered} =6+9 \\ =15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7uck3yn499w093kn4una2flqg3ue27peje.png)
N(Male)
![\begin{gathered} =6+5 \\ =11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g08aoz1j34n1ry5qhoz05rhrpuyom6elv4.png)
N(professors and male)
![=6](https://img.qammunity.org/2023/formulas/mathematics/high-school/2eqcuu0rxtozt9v5axs060hbamppcq42w8.png)
N(professors OR male) = N(professors) + N(males) -N(professor OR male)
![\begin{gathered} N(\text{ Professors OR male)=15+11-6} \\ =20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6f7sv890fr9xu2kvta9wrdbegbrlvxgeow.png)
N(People to choose from)
![\begin{gathered} =6+9+5+6 \\ =26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rwv6d5jbef97wp2sme3xwyjd03off39er6.png)
Then probablitiy is:
![\begin{gathered} =(20)/(26) \\ =(10)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/anf9o6dyzhwsepxcg8vgkb9j13oamwyqhc.png)
Then the probability is 10/13