The slope formula is:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
First, let's solve the slope for Line 1.
a. Subtract y₁ from y₂.
![-10-5=-15](https://img.qammunity.org/2023/formulas/mathematics/college/842xnd1yyyq72n5mr6c0j72my7rvl8p89c.png)
b. Subtract x₁ from x₂.
![3-0=3](https://img.qammunity.org/2023/formulas/mathematics/college/tuar0h5mro6osy8ufdd04626qgyaskkn09.png)
c. Divide the result in step a by the result in step b.
![-15/3=-5](https://img.qammunity.org/2023/formulas/mathematics/college/ughb6wbd0k1tlkxbqnjfqzj6wchq63boqh.png)
Hence, the slope of Line 1 is -5.
Let's now solve the slope of Line 2. Use the same steps above.
a. Subtract y₁ from y₂.
![38-3=35](https://img.qammunity.org/2023/formulas/mathematics/college/rxlwbgfhxt055hqim3d2a5byhb00f6rs2g.png)
b. Subtract x₁ from x₂.
![6-(-1)=7](https://img.qammunity.org/2023/formulas/mathematics/college/dyank2dw2il9obkz8xj50j2fnqeergmqhc.png)
c. Divide the result in step a by the result in step b.
![35/7=5](https://img.qammunity.org/2023/formulas/mathematics/high-school/pjvl53n8qtbhu9j3yrv2bygpe0qnnnvuai.png)
Hence, the slope of Line 2 is 5.