Given the function f(x), the slope is evaluated by differentiating the f(x) function with respect to x.
Thus,
![\text{slope = }(df(x))/(dx)\text{ = f'(x)}](https://img.qammunity.org/2023/formulas/mathematics/college/16tu0yf1dfiursaul35cpuo14683bx33f9.png)
Given a function f(x) as
![f(x)\text{ = }\frac{4}{\sqrt[]{x+5}}](https://img.qammunity.org/2023/formulas/mathematics/college/meuqr27i84cj70hg91t7u0zrcb8dv9jgcx.png)
Step 1:
Differentiate the f(x) function with respect to x.
![\begin{gathered} f(x)\text{ = }\frac{4}{\sqrt[]{x+5}}\text{ can also be written as} \\ f(x)\text{ = }4(x+5)^{-(1)/(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i08e6gtf5gza1heyt6zqf4es8s8j289x8u.png)
differentiating the f(x) function, we have
![\begin{gathered} f(x)\text{ = }4(x+5)^{-(1)/(2)} \\ (df(x))/(dx)\text{ = -}(1)/(2)*4(x+5)^{-(1)/(2)-1} \\ \Rightarrow slope=f^(\prime)(x)=-2(x+5)^{-(3)/(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ecss5e93pxc4l6ywbf8yi0ocek7gid13nb.png)
Step 2:
Evaluate the slope at the point (-1, 1).
The slope at the point (-1, 1) is evaluated by substituting the values of x and y into the f'(x) function.
Thus,
![\begin{gathered} x\text{ = -1, y = 1} \\ \text{substitute the values of x and y into f'(x)} \\ f^(\prime)(x)=-2(x+5)^{-(3)/(2)} \\ =-2(-1+5)^{-(3)/(2)} \\ =-2(4)^{-(3)/(2)} \\ =-2*(1)/(8)^{} \\ =-(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n28gkqit9ts3syrp460gl4xknrbmctyxat.png)
Hence, the slope of the function at the point (-1, 1) is
![-(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nusxxqwflqzx9ulwh5lbn3a1r65q8k6gfs.png)