62.4k views
5 votes
Writing the equation of a line through the two given points of (-3, 4) and (3, 1)

User JacekK
by
8.8k points

1 Answer

0 votes

The form of the equation of the line is


y=mx+b

Where m is the slope and b is the y-intercept

In order to find the equation of the line first, we need to find the slope using the next formula


m=(y_2-y_1)/(x_2-x_1)

where m is the slope, (x1,y1) and (x2,y2) are points where the line passes through

in our case

(-3,4)=(x1,y1)

(3,1)=(x2,y2)

we substitute the values


m=(1-4)/(3+3)=(-3)/(6)=-(1)/(2)

Then we need to find the y-intercept so we will use the form of the line we will use x=3 and y=1


1=-(1)/(2)(3)+b

then we isolate the b


b=1+(3)/(2)=(5)/(2)

ANSWER

The equation of the line is


y=-(1)/(2)x+(5)/(2)

User Aju
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories