The general form of the cosine function is:
![y=A\cdot\cos (\omega\cdot x)+h](https://img.qammunity.org/2023/formulas/mathematics/college/dqsmziz8x0bcaii5kr9t07ptapwsf7k1gf.png)
Where A is the amplitude, ω is the angular frequency, and "h" is a translation factor.
We see that the function goes from -1 to +1 (y-coordinate). Then, the amplitude of the function is:
![A=1](https://img.qammunity.org/2023/formulas/mathematics/college/27vd9vod205vaklfci461o48isi8eyvlaf.png)
The period of the function is 2π. The period T relates to the angular frequency as:
![\omega=(2\pi)/(T)](https://img.qammunity.org/2023/formulas/mathematics/college/kq1uc04i5fidm3xyncbt9tb400nmqyvtc6.png)
From the value of T:
![\omega=(2\pi)/(2\pi)=1](https://img.qammunity.org/2023/formulas/mathematics/college/vav9284t4fyj1yra8not0yvo1w1z4x5pze.png)
Finally, there is no vertical shift, so h must be 0. The final function is:
![y=1\cdot\cos (1\cdot x)+0](https://img.qammunity.org/2023/formulas/mathematics/college/pwq95n21ufjfz4uiunnaru81pw1kix24t5.png)
Since the function is not shifted, the midline is just the x-axis:
![\text{Midline}\colon y=0](https://img.qammunity.org/2023/formulas/mathematics/college/e3fjesh69hka2ll36oi66irpimwwdcg2mt.png)