From the given figure,
![\Delta PQR\text{ is similar to }\Delta STU](https://img.qammunity.org/2023/formulas/mathematics/college/8dwvz45u5qxg26ek3lpn1fa39eqpfrwnrf.png)
When two triangles are similar then ratio of their corresponding sides are similar.
![(PQ)/(ST)=(QR)/(TU)=(PR)/(SU)](https://img.qammunity.org/2023/formulas/mathematics/college/x2v81cxwmpq2cwqgad9lv16zt0bxwtvijs.png)
Substituting the values in the above equation,
![(8)/(16)=\frac{10}{x\text{ + 3}}=(5y-1)/(28)](https://img.qammunity.org/2023/formulas/mathematics/college/qbrtmt097jyzztmwezte1ydffi1w67jj19.png)
Calculating the value of x ,
![\begin{gathered} (8)/(16)=\text{ }(10)/(x+3) \\ 8(x+3)=10*16 \\ 8x+24=160 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/80pt42p2rm7070mxc7wjtjl8wd7me0ych3.png)
Rearranging the like terms o both the sides ,
![\begin{gathered} 8x\text{ = 160 - 24} \\ 8x\text{ = 136} \\ x\text{ = }(136)/(8) \\ x\text{ = 17} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bhc72z6dt4vxvbylh7pwvm4hur2jsgww0m.png)
Calculating the value of y,
![\begin{gathered} (8)/(16)\text{ = }(5y-1)/(28) \\ 8\text{ }*\text{ 28 = }16*\text{ (5y-1)} \\ 224\text{ = 80y - 16} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9t9o8ric413cd06gjzvbsd39wijr5rx765.png)
Rearranging the like terms on both the sides ,
![\begin{gathered} 224\text{ + 16 = 80y} \\ 80y\text{ = 240} \\ y\text{ = }(240)/(80) \\ y\text{ = 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sgt22qw8wsm3v0taiv1ywazv82z1dd0glj.png)
Thus the required values of x and y are ,
![\begin{gathered} x\text{ = 17} \\ y\text{ = 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nabnoq5tybak4d4pk2n1rymepacjw7x64h.png)