452.39 cubic centimeters
Step-by-step explanation
the volume of a hemisphere is given by:
![V=(2)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/college/3oaxfbuq3o9c4jb2nrd4gieywiid6c63ir.png)
so
Step 1
find the radius:
the circumference is given by:
![C=2\pi r](https://img.qammunity.org/2023/formulas/mathematics/high-school/noytl63lm1q06t23qsdkycir68uwxrmxzb.png)
then, let
![C=37.7\text{ cm}](https://img.qammunity.org/2023/formulas/mathematics/college/zyuaacmtz1kinivj6hwopzl11cpya78wr2.png)
replace and solve for r
![\begin{gathered} C=2\pi r \\ r=(C)/(2\pi) \\ replace \\ r=\frac{37.7\text{ cm}}{2*3.14}=6 \\ r=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dcqoprj31zfshcr3crvv05gu4aan42md53.png)
som the radius is 6 cm
Step 2
now, let
![r=6\text{ cm}](https://img.qammunity.org/2023/formulas/mathematics/college/u4bpvbt3hbnuqjen48f5jedpjss5uv123l.png)
now, replace in the formula to find the volume of the hemisphere
![\begin{gathered} V=(2)/(3)\pi r^3 \\ V=(2)/(3)\pi(6\text{ cm\rparen}^3 \\ V=(2)/(3)\pi *216(\text{cm}^3) \\ V=452.3893\text{ \lparen cm}^3) \\ rounded \\ V=452.39\text{ \lparen cm}^3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uvcf1eam9fhsydtcaymf6yc9o4hw09eevj.png)
so, the answer is
452.39 cubic centimeters
I hope this helps you