Given: A system of linear equations in three variables x, y, and z as follows-
![\begin{gathered} 2x+y-z=9 \\ -x+6y+2z=-17 \\ 5x+7y+z=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d0u9dvszbw9268lpklztfnr7im26om3dmb.png)
Required: To solve the system using elimination.
Explanation: Let the given system as-
![\begin{gathered} 2x+y-z=9\text{ ...}(1) \\ -x+6y+2z=-17\text{ ...}(2) \\ 5x+7y+z=4\text{ ...\lparen3\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8a7kcns27h0l9e93znvi6ny8b5w5yend69.png)
We can solve the system by reducing the system to a system of 2 variables. Suppose we would like to remove the variable z.
Multiplying equation (1) by 2, adding to equation (2) as follows-
![\begin{gathered} (4x+2y-2z)+(-x+6y+2z)=18+(-17) \\ 3x+8y=1\text{ ...}(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ryasfuykz88zpek3wvp446m1akkpkift89.png)
Now, add equations (1) and (3) as follows-
![\begin{gathered} (2x+y-z)+(5x+7y+z)=9+4 \\ 7x+8y=13\text{ ...}(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sbafhitdqjw4n7aqm5nro5twuum5fxjlj7.png)
Now, equations (4) and (5) represent a system of linear equations in two variables. Subtracting the equations as follows-
![\begin{gathered} (3x+8y)-(7x+8y)=1-13 \\ -4x=-12 \\ x=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5qr8q5zo1yn0w4ge140i2klvfx0swdg6lh.png)
Substituting x=3 in equation (4)-
![\begin{gathered} 9+8y=1 \\ 8y=-8 \\ y=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xcawydh6quk34ge3dvzokas1knc1x3zab9.png)
Substituting x=3 and y=-1 in equation (1) as follows-
![\begin{gathered} 6-1-z=9 \\ z=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jwl525nk5vwttg5o8uc1usp62ysnejav2q.png)
Final Answer: The solution to the system is-
![\begin{gathered} x=3 \\ y=-1 \\ z=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nupqseirly1ts2rcggxxnz4r5mqih3upxw.png)