217,852 views
16 votes
16 votes
Use the definite integral and the Fundamental Theorem of Calculus to solve the following problem. A ball is thrown upward from a height of 1.2 m at an initial speed of 58 m/sec. Acceleration resulting from gravity is -9.8 m/sec^2. Find the following:

v(t)= _________
h(t)= ________

User Rubel Biswas
by
2.8k points

2 Answers

17 votes
17 votes

Answer:

V(t) = 58-9.8t

h(t)=1.2+58t-4.9
t^(2)

Explanation:

Using the standard formula

a=V f-Vi/t --rearrange

at=V f-Vi

V f=V i + a t

therefore

V(t)=58-9.8t

same with height

H= Hi+Vit+1/2at^2

therefore

h(t)=1.2+58t-4.9t^2

User Cybot
by
2.7k points
12 votes
12 votes

If v(t) and h(t) denote the ball's velocity and height at time t, respectively, then we have h(0) = 1.2 m and v(0) = 58 m/s.

The ball is in free fall after being tossed, so its acceleration is constant at any time t :


a(t) = -9.8 (\rm m)/(\mathrm s^2)

By the fundamental theorem of calculus, the velocity function is given by


\displaystyle v(t) = v(0) + \int_0^t a(u) \, du

Compute the integral:


\displaystyle v(t) = 58 (\rm m)/(\rm s) - \left(9.8 (\rm m)/(\mathrm s^2)\right) \int_0^t du


\displaystyle v(t) = 58 (\rm m)/(\rm s) - \left(9.8 (\rm m)/(\mathrm s^2)\right) (t - 0)


\displaystyle \boxed{v(t) = 58 (\rm m)/(\rm s) - \left(9.8 (\rm m)/(\mathrm s^2)\right) t}

Similarly, the height function is given by


\displaystyle h(t) = h(0) + \int_0^t v(u) \, du


\displaystyle h(t) = 1.2 \, \mathrm m + \int_0^t \left(58 (\rm m)/(\rm s) - \left(9.8 (\rm m)/(\mathrm s^2)\right) t\right) \, du


\displaystyle h(t) = 1.2 \, \mathrm m + \left(58 (\rm m)/(\rm s)\right) (t - 0) - \frac12 \left(9.8 (\rm m)/(\mathrm s^2)\right) (t^2 - 0^2)


\displaystyle \boxed{h(t) = 1.2 \, \mathrm m + \left(58 (\rm m)/(\rm s)\right) t - \frac12 \left(9.8 (\rm m)/(\mathrm s^2)\right) t^2}

User Acelent
by
2.6k points