We will have the following:
First, we determine the middle point of the projectile travel:
![R=((900m/s)^2sin(2\ast30))/(9.8m/s^2)\Rightarrow R=71579.65072...m](https://img.qammunity.org/2023/formulas/physics/college/mamhdmzue35ned100ic4zaxcwyje3xhiii.png)
So, the middle point will be approximately half of that, then the time will be determined as follows:
![\begin{gathered} ((900)^2sin(60))/(9.8\ast2)=900cos(30)t+(1)/(2)(0)t^2\Rightarrow900cos(30)t=((900)^2sin(60))/(9.8\ast2) \\ \\ \Rightarrow t=((900)^2sin(60))/(900cos(30)(9.8)(2))\Rightarrow t=(900sin(60))/((9.8)(2)cos(30)) \\ \\ \Rightarrow t=(2250)/(49)s \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/yjnz3kczhowfkiqvd7tsrm0bch3fpahb9a.png)
So, the time it will take to reach the maximum height is approximately 45.918s.