Let:
• y, be the cost of the plan
,
• x, be the minutes spend on call
This way, we'll have:
Plan A:
![y=0.12x+20](https://img.qammunity.org/2023/formulas/mathematics/college/39zi2wak1yjrpkh43zj17sexi9k3taa1ro.png)
Plan B:
![y=0.17x+13](https://img.qammunity.org/2023/formulas/mathematics/college/lm7fpsmltz548e1nw7vxlikekqu9ffagh4.png)
If the two plans cost the same, we'll have that:
![0.12x+20=0.17x+13](https://img.qammunity.org/2023/formulas/mathematics/college/b6n6o6cdq1qmyvfx5g7vumfa4u1desirnp.png)
Solving for x :
![\begin{gathered} 20-13=0.17x-0.12x \\ \rightarrow7=0.05x \\ \rightarrow(7)/(0.05)=x \\ \\ \Rightarrow x=140 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1cimrm24y087xo4897x2hqnzvjd4y7oorf.png)
A) The two plans will cost the same for 140 minutes on call
The cost will be:
![\begin{gathered} y=0.12(140)+20 \\ \Rightarrow y=36.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cpml8n9mfhkk142y0fv0byggt6bh2qvwgw.png)
B) $36.80