Answer:
A. The variation of the equation is
![H=(1)/(2)L](https://img.qammunity.org/2023/formulas/mathematics/college/9972rbb9d1wve3ek1tmlhrtg7635pgc2kr.png)
B. H is 10 when L is 20
Step-by-step explanation:
Given that H varies directly as L, this can be written as:
![H\propto L](https://img.qammunity.org/2023/formulas/mathematics/college/b7n42ptsgjoks4fqjl3twhpt1uh60ybxfc.png)
and defined as:
![H=kL](https://img.qammunity.org/2023/formulas/mathematics/college/tbgtuc9hd1lwzmbi6626ocbfmex4xgtqxl.png)
where k is constant.
To find the value of k, we use the given values H = 15 when L = 30
![15=30k](https://img.qammunity.org/2023/formulas/mathematics/college/gfmwb91h3ny325i50tuqgumthezes9eppw.png)
Divide both sides by 30
A.
![k=(15)/(30)=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/wk7lgqo1n7qyuc9dhqe99q0s30ljlig61e.png)
Therefore, the formula is:
![H=(1)/(2)L](https://img.qammunity.org/2023/formulas/mathematics/college/9972rbb9d1wve3ek1tmlhrtg7635pgc2kr.png)
B.
We want to determine H when L is 20
![H=(1)/(2)(20)=10](https://img.qammunity.org/2023/formulas/mathematics/college/wi9gyazg1gv97fu24bnraln7ef94wy1ebp.png)
H is 10 when L is 20