To solve this, we'll use Euler's Polyhedral formula.
This formula states that in any polyhedron, the number of vertices V, faces F, and edges E, satisfy:
![V+F-E=2](https://img.qammunity.org/2023/formulas/mathematics/college/q5jz08k4hemulsbbgnvr9834roxg43c3ge.png)
If we solve for the edges E, we'll get:
![V+F-2=E](https://img.qammunity.org/2023/formulas/mathematics/college/5p6oahdjav2lv0vpq7mqo6tqgwpfbbbc79.png)
Using the data given,
![\begin{gathered} V+F-2=E \\ \rightarrow6+8-2=E \\ \rightarrow12=E \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m8b419l47kjau8lqebbjczmzex38sy3mfg.png)
We get that the polyhedron would have 12 edges