Given the right traingle with side lengths:
d, e, and f
Let's find cosx, sinx, and tanx.
From the given figure, we have:
Opposite side which is the side opposite the given angle(x) = d
Adjacent side which is the side adjacent the given angle (x) = e
Hypotenuse which is the longest side of the triangle = f
θ which is the given angle = x
To solve this, we are to apply trigonometric ratio formula for each of the following.
Thus, we have:
• a) cos x:
Apply the trigonometric ratio formula for cosine:
![\cos \theta=\frac{adjacent}{\text{hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/wwgbumq5a8tmnwlea4e8c0ifbzghveskx4.png)
Substitute the values into the equation:
![\cos x=(e)/(f)](https://img.qammunity.org/2023/formulas/mathematics/college/7p1nzqqpz601z31dsxrak0ac09u45cg3qc.png)
• b) sinx:
Apply the tigonometric ratio formula for sine:
![\sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/bzzn3f7mj87d6awx4jyitkxgatgeup6pyg.png)
Substitute the variables into the equation:
![\sin x=(d)/(f)](https://img.qammunity.org/2023/formulas/mathematics/college/j9s7m23m8ld1syst4yawnqhurq1jcawsfu.png)
• c) tanx:
Apply the trigonometric ratio formula for tan:
![\tan \theta=\frac{\text{opposite}}{\text{adjacent}}](https://img.qammunity.org/2023/formulas/mathematics/college/ohgs2psze70dnb8wl6d1mzesw6n0ap5m5g.png)
Substitute the variables into the equation:
![\tan x=(d)/(e)](https://img.qammunity.org/2023/formulas/mathematics/college/eg04btw31ddgng28sra30c2o52w8t8xfws.png)
ANSWER:
![\begin{gathered} \cos x=(e)/(f) \\ \\ \\ \sin x=(d)/(f) \\ \\ \\ \tan x=(d)/(e) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lkvse1juekpfeasuqp93p4f095c1a1u963.png)