Ok, let's find the side HT to help us decide:
![32^2=30^2+HT^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ceg4yp3u1ikf86zeufmwdgs5y5os5eb5mm.png)
Clearing HT:
![32^2-30^2=HT^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/xr7alunho5rrhhitdirzpfwkzl9xr1v85m.png)
![1024-900=HT^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/qf1sngeq2unxwqrxewzzkfxajvnz03za45.png)
![124=HT^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/qvc7ruiyd4d1m9rlvs045meud1xkopamcc.png)
![HT=\sqrt[]{124}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ibfyv041933rznkypzx805vlthq62c9mah.png)
And, now let's find SW:
![\begin{gathered} SW^2=48^2-44^2=2304-1936=368 \\ SW=\sqrt[]{368} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vcxpr8omg6vubk1gejrrluv7v7owz309e4.png)
And finally let's calculate the angles:
We know that angles T and Q are equal to 90°
M=arccos(30/32)=arccos(0.9375)=20.36
Q=arc cos(44/48)=arccos=23.55
So, finally we have that ΔMTH ~ ΔQWS is similar by SAS.