Given :
x varies directly with y.
So, the relation between them will be :
![y=k\cdot x](https://img.qammunity.org/2023/formulas/mathematics/college/a0r8mfu5ejnpo5kqd0vablwmcl6k945tnc.png)
Where x is the constant of proportionality
Given x = 12 when y = 9 , the constant k will be :
![\begin{gathered} 9=k\cdot12 \\ k=(9)/(12)=(3)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/89w38hy8ns0prmzimvyvvf64q9h2sfr8zc.png)
So, the relation will be :
![y=(3)/(4)x](https://img.qammunity.org/2023/formulas/mathematics/college/8j5k7qt4ue80vtjqsb9wmsb303j5lxf40k.png)
We need to find y when x = 28
So, substitute with x = 28
![\begin{gathered} y=(3)/(4)\cdot28 \\ \\ y=21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cgh11lnpr873oogszfq1brtmx6lbmed6bx.png)