208,058 views
6 votes
6 votes
COS(α+β); SINα=- 1/3, α IN QUADRANT IV, TANβ=7/3, β IN QUADRANT III

User Alk
by
2.8k points

1 Answer

12 votes
12 votes

Recall the angle sum identity for cosine,

cos(α + β) = cos(α) cos(β) - sin(α) sin(β)

We're given sin(α) = -1/3 and tan(β) = 7/3. Since α terminates in quadrant IV, we know that cos(α) is positive, and since β terminates in quadrant III, both sin(β) and cos(β) are negative.

Recall the Pythagorean identities,

cos²(x) + sin²(x) = 1

and

1 + tan²(x) = sec²(x)

Using the first identity, we find

cos²(α) = 1 - sin²(α)

cos(α) = + √(1 - (-1/3)²)

cos(α) = + √(8/9)

cos(α) = √8/3

Using the second identity,

sec²(β) = 1 + tan²(β)

sec(β) = - √(1 + tan²(β))

sec(β) = - √(1 + (7/3)²)

sec(β) = - √(58/9)

sec(β) = -√58/3

cos(β) = -3/√58

Then by definition of tangent,

tan(β) = sin(β) / cos(β)

sin(β) = tan(β) cos(β)

sin(β) = (7/3) (-3/√58)

sin(β) = -7/√58

Putting everything together,

cos(α + β) = cos(α) cos(β) - sin(α) sin(β)

cos(α + β) = (√8/3) (-3/√58) - (-1/3) (-7/√58)

cos(α + β) = -(7 + 3√8)/(3√58)

User Nitro Zark
by
2.9k points