A) To know how many times greater 9*10⁵ is from 3*10³, you have to divide both values:
![(9\cdot10^5)/(3\cdot10^3)](https://img.qammunity.org/2023/formulas/mathematics/college/s2zd3bkncsaxvki48noxzc4zsg7dun5k3m.png)
You can divide this fraction into two:
![(9)/(3)\cdot(10^5)/(10^3)](https://img.qammunity.org/2023/formulas/mathematics/college/lebtjek3m29z4v6gbjtc2rp7x65mhylrwl.png)
And solve them separatelly, afterwards you can multiply the results of both fractions:
![(9)/(3)=3](https://img.qammunity.org/2023/formulas/mathematics/college/71z8lzpyajp64z66hqycrvgh3tkrdcnriy.png)
![(10^5)/(10^3)=10^(5-3)=10^2](https://img.qammunity.org/2023/formulas/mathematics/college/l2se74kavvzswoo6c64l9a3c6ngvzuhgvp.png)
Note: when you divide two exponents values with the same base number, you have to subtract both exponent numbers.
Multiply both results:
![3\cdot10^2=300](https://img.qammunity.org/2023/formulas/mathematics/college/ge1yvdvlzpdpuerpvs1eijj568esdnpvwz.png)
9*10⁵ is A. 300 times larger as 3*10³
B) To calculate how many times 5*10⁻³ is smaller than 5*10⁻², you have to divide the greater number by the smaller number.
![(5\cdot10^(-2))/(5\cdot10^(-3))](https://img.qammunity.org/2023/formulas/mathematics/college/rm2trnavn5po96zbgrbvqzpuqmvmg2h7hj.png)
Following the same procedure as before:
![(5)/(5)\cdot(10^(-2))/(10^(-3))](https://img.qammunity.org/2023/formulas/mathematics/college/452oqrwgfbm43zdqaibl3rrkn5xbq29i2k.png)
![(5)/(5)=1](https://img.qammunity.org/2023/formulas/mathematics/college/yctdy3oz4o2km24crkugunt07hcl7rs9mk.png)
![(10^(-2))/(10^(-3))=10^(-2-(-3))=10^(-2+3)=10^1](https://img.qammunity.org/2023/formulas/mathematics/college/s786ln5szw8we2alexwtz0lybxkw9vyck8.png)
Reunite both values:
![1\cdot10^1=10](https://img.qammunity.org/2023/formulas/mathematics/college/kvogkx6s5uu31gpodv8rysr6pw85qts1l0.png)
5*10⁻³ is B. 10 times smaller as 5*10⁻²