By definition, a Reflection is a transformation in which the figure is flipped over a line of reflection.
When a figure is reflected across the x-axis, the rule you must apply is the following:
![(x,y)\rightarrow\mleft(x,-y\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/kg1e30l577lbllcvzbw0vqu6qyci16hps4.png)
As you can notice, when a point is reflected across the x-axis, the sign of the y-coordinate changes.
In this case, you know that the vertices of the Pre-Image (the triangle PQR) are:
![\begin{gathered} P\mleft(-5,-7\mright);Q\mleft(-3,-4\mright);R\mleft(2,-6\mright) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pe88iukg78fhtqdxi4elb0xx2ko3yuci6x.png)
Then, applying the rule, you get that the vertices of the Image (triangle P'Q'R'), are:
![\begin{gathered} P\mleft(-5,-7\mright)\rightarrow P^(\prime)\mleft(-5,7\mright) \\ Q\mleft(-3,-4\mright)\rightarrow Q^(\prime)\begin{pmatrix}-3,4\end{pmatrix} \\ R\mleft(2,-6\mright)\rightarrow R^(\prime)\mleft(2,6\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lm5vsfcihutalrsqu69nypkyhx148mb2y5.png)
The answer is:
![\begin{gathered} P^(\prime)(-5,7) \\ Q^(\prime)\begin{pmatrix}-3,4\end{pmatrix} \\ R^(\prime)(2,6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wbsplyy8b1elq1j6uiag8wx65ughosu7hz.png)