Solution:
Given the sequence;
![1,2,3,4,5,6,7,8,...](https://img.qammunity.org/2023/formulas/mathematics/college/c1jz4nsxlnbftvsgt0zxi3pu4n332kbk9w.png)
A sequence with a common difference d, is called an Arithmetic Sequence.
![\begin{gathered} a_n=n^{th\text{ }}term \\ \\ a_1=first\text{ }term=1 \\ \\ a_2=second\text{ t}erm=2 \\ \\ d=a_2-a_1 \\ \\ d=2-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/luab5xppgqjbp5whst3ubwk2uu1zxqqmyq.png)
The nth term of an arithmetic sequence is generally given as;
![\begin{gathered} a_n=a_1+d(n-1) \\ Where\text{ }n\text{ }means\text{ }number\text{ }of\text{ }terms \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nv0pso5k3gooy9laqsoe4o1u1zjrr8lvfl.png)
Thus, in the problem, the first term, the common difference are known. Then, we would substitute the value into the nth term formula. We have;
![a_n=1+1(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/c3kr38kn9czoci508t0n3wfrsbtkys4blr.png)
Then, simplify further;
![\begin{gathered} a_n=1+n-1 \\ a_n=1-1+n \\ a_n=n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wj2n3covixgv67iroihqfl3n1ixbfmkmqz.png)
ANSWER:
![The\text{ }n^(th)\text{ }term\text{ }a_n\text{ }is\text{ }n](https://img.qammunity.org/2023/formulas/mathematics/college/nqg7zio1s426fs26op1wgj1puhomwg1fnz.png)