172k views
3 votes
Which trigonometric function is equivalent to f(x) = sin x

Which trigonometric function is equivalent to f(x) = sin x-example-1

1 Answer

0 votes

Explanation

We are given the function:


f(x)=\sin x

We are required to determine the equivalent trigonometric function as that given above.

We know that the following trigonometric equivalence exists:


\begin{gathered} \cos(90-x)=\sin x \\ \cos(90+x)=-\sin x \\ \cos(180-x)=-\cos x \\ \cos(180+x)=-\cos x \\ \cos(270-x)=-\sin x \\ \cos(270+x)=\sin x \\ \cos(360-x)=\cos x \\ \cos(360+x)=\cos x \end{gathered}

Next, we determine the value of each option as follows:


\begin{gathered} Option\text{ }A:f(x)=\cos(x-(3\pi)/(2))=\cos\lbrace-((3\pi)/(2)-x)\rbrace \\ =\cos((3\pi)/(2)-x)=\cos(270-x)=-\sin x \\ \\ Option\text{ }B:f(x)=\cos(x-(\pi)/(2))=\cos\lbrace-((\pi)/(2)-x)\rbrace \\ =\cos((\pi)/(2)-x)=\cos(90-x)=\sin x \\ \\ Option\text{ }C:f(x)=\cos(-x-(\pi)/(2))=\cos\lbrace-((\pi)/(2)+x)\rbrace \\ =\cos((\pi)/(2)+x)=\cos(90+x)=-\sin x \\ \\ Option\text{ }D:f(x)=\cos(x+\pi)=\cos(180+x)=-\cos x \end{gathered}

Hence, the answer is option B.


\begin{equation*} f(x)=\cos(x-(\pi)/(2)) \end{equation*}

User Alexsa
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories