Explanation
We are given the function:
![f(x)=\sin x](https://img.qammunity.org/2023/formulas/mathematics/high-school/xfz8stw5hudqutw1oyx532io5qh86m31zu.png)
We are required to determine the equivalent trigonometric function as that given above.
We know that the following trigonometric equivalence exists:
![\begin{gathered} \cos(90-x)=\sin x \\ \cos(90+x)=-\sin x \\ \cos(180-x)=-\cos x \\ \cos(180+x)=-\cos x \\ \cos(270-x)=-\sin x \\ \cos(270+x)=\sin x \\ \cos(360-x)=\cos x \\ \cos(360+x)=\cos x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4309954i07399avtkiquohmdt7zg339rif.png)
Next, we determine the value of each option as follows:
![\begin{gathered} Option\text{ }A:f(x)=\cos(x-(3\pi)/(2))=\cos\lbrace-((3\pi)/(2)-x)\rbrace \\ =\cos((3\pi)/(2)-x)=\cos(270-x)=-\sin x \\ \\ Option\text{ }B:f(x)=\cos(x-(\pi)/(2))=\cos\lbrace-((\pi)/(2)-x)\rbrace \\ =\cos((\pi)/(2)-x)=\cos(90-x)=\sin x \\ \\ Option\text{ }C:f(x)=\cos(-x-(\pi)/(2))=\cos\lbrace-((\pi)/(2)+x)\rbrace \\ =\cos((\pi)/(2)+x)=\cos(90+x)=-\sin x \\ \\ Option\text{ }D:f(x)=\cos(x+\pi)=\cos(180+x)=-\cos x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ixd5wori9peqxipmcs1045j9ckyg6gmps.png)
Hence, the answer is option B.
![\begin{equation*} f(x)=\cos(x-(\pi)/(2)) \end{equation*}](https://img.qammunity.org/2023/formulas/mathematics/college/hpfv4vged9h9dk7rjb0cakn586fbkputr4.png)