86.9k views
5 votes
I found the slopes and graphed it I just need help finding the lengths.Quadrilateral OPQR can be described as:square, rectangle, a rhombus, a parellogram, a generic quadraliteral

I found the slopes and graphed it I just need help finding the lengths.Quadrilateral-example-1
I found the slopes and graphed it I just need help finding the lengths.Quadrilateral-example-1
I found the slopes and graphed it I just need help finding the lengths.Quadrilateral-example-2

1 Answer

4 votes

Given:

Point O=(-3,-3)

Point P=(3,-7)

Point Q=(5,-4)

Point R=(-1,0)

To determine the slope, we use the formula:


m=(y_2-y_1)/(x_2-x_1)

To get the slope of OP, we let :

x1=-3

y1=-3

x2=3

y2=-7

So,


m=(y_(2)-y_(1))/(x_(2)-x_(1))=(-7-(-3))/(3-(-3))=(-4)/(6)=-(2)/(3)

To get the length of OP, we use the distance formula:


d=√((x_2-x_1)^2+(y_2-y_1)^2)

where:

d=distance

So,


\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ =√((3-(-3))^2+(-7-(-3))^2) \\ Simplify \\ d=√(52) \\ d=2√(13) \end{gathered}

Hence, the length of OP is:


2√(13)

For PQ, we let:

x1=3

y1=-7

x2=5

y2=-4

So,


m=(y_2-y_1)/(x_2-x_1)=(-4-(-7))/(5-3)=1(1)/(2)=(3)/(2)
\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ d=√(2^2+3^2)=√(13) \end{gathered}

For QR, we let:

x1=5

y1=-4

x2=-1

y2=0

So,


m=(y_2-y_1)/(x_2-x_1)=(0-(-4))/(-1-5)=(4)/(-6)=-(2)/(3)
d=√((x_2-x_1)^2+(y_2-y_1)^2)=√((-6)^2+(4)^2)=√(52)=2√(13)

For RO, we let:

x1=-1

y1=0

x2=-3

y2=-3


m=(y_2-y_1)/(x_2-x_1)=(-3-0)/(-3-(-1))=(-3)/(-2)=1(1)/(2)=(3)/(2)
d=√((x_2-x_1)^2+(y_2-y_1)^2)=√((-2)^2+(-3)^2)=√(13)

Therefore, the lengths are:


\begin{gathered} OP=2√(13) \\ PQ=√(13) \\ QR=2√(13) \\ RO=√(13) \end{gathered}

The given Quadrilateral OPQR is a rectangle since the opposite sides are equal and parallel to each other.

User Charles Roper
by
8.3k points

Related questions

asked Oct 26, 2024 235k views
Rinde asked Oct 26, 2024
by Rinde
7.8k points
1 answer
1 vote
235k views
1 answer
2 votes
32.2k views