To solve this problem, evaluate the equation for all the values of x in the options.
5:
![\sqrt[]{5^2-9}=\sqrt[]{25-9}=\sqrt[]{16}=4](https://img.qammunity.org/2023/formulas/mathematics/college/6ty5qyj1q8fp352qvawx0wl9jsm7h92c5u.png)
4 is a real but a rational number, it means this option is incorrect.
0:
![\sqrt[]{0^2-9}=\sqrt[]{-9}=3i](https://img.qammunity.org/2023/formulas/mathematics/college/bxjjt7ej66yg6db561pbqs80awfj0fj2az.png)
3i is not a real number, this option is incorrect.
-3:
![\sqrt[]{(-3)^2-9}=\sqrt[]{9-9}=\sqrt[]{0}=0](https://img.qammunity.org/2023/formulas/mathematics/college/ap6sboeldj7dz7lhnjalwqmzergzdwwng1.png)
0 is a real but a rational number, this option is incorrect.
4:
![\sqrt[]{4^2-9}=\sqrt[]{16-9}=\sqrt[]{7}](https://img.qammunity.org/2023/formulas/mathematics/college/jqdp28n6ckhisp61jtvija6asugglr07zz.png)
The square root of 7 is a real and irrational number, it means, this is the correct option.