Solution:
Given:
In a circle, a radius perpendicular to a chord bisects the chord.
![\begin{gathered} Angle\text{ is bisected;} \\ \theta=(55)/(2)=27.5^0 \\ chord\text{ is bisected;} \\ l=(23.5)/(2)=11.75in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g8750y1ybaffy7ldfi976fbo7xmhir4h69.png)
Hence, the right triangle can be extracted below.
To get the radius of the circle, we use the trigonometric identity of sine.
Hence,
![\begin{gathered} sin\theta=(opposite)/(hypotenuse) \\ where: \\ \theta=27.5^0 \\ opposite=11.75 \\ hypotenuse=r \\ \\ sin27.5=(11.75)/(r) \\ Cross\text{ multiplying;} \\ r=(11.75)/(sin27.5) \\ r=25.45in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7i9cdhm9gsygr9ms35g6obdpeblu2nlfuu.png)
Therefore, the radius of the circle is 25.45 in