Given:
Mass of meteorite = 9 x 10¹⁴ kg
Initial Velocity of meteorite = 10 m/s
Assuming that the collision is elastic, let's determine the final velocities of earth and meteorite.
Where:
Mass of earth = 5.98 x 10²⁴ kg
To determine the final velocity, apply the conservation of momentum
![m_1u_1+m_2u_2=m_1v_1+m_2v_2](https://img.qammunity.org/2023/formulas/physics/college/t4onuxsn89xbdlh5ekaiaqhm93negpbhfl.png)
Where:
m1 = 9 x 10¹⁴ kg
m2 = 5.98 x 10²⁴ kg
u1 is the initial velocity of meteorite = 10 m/s
u2 is the initial velocity of the earth = 0 m/s (the earth at rest).
v1 is the final velocity of the meteorite
v2 is the final velocity of the earth.
Thus, we have:
![\begin{gathered} (9\ast10^(14)*10)+(5.98\ast10^(24)*0)=(9\ast10^(14)* v_1)+(5.98\ast10^(24)* v_2) \\ \\ 9\ast10^(15)=9\ast10^(14)v_1+5.98\ast10^(24)v_2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xcdjnw8jlpoxmkyxcjgadujhuik187kb6x.png)
![10=-v_1+v_2](https://img.qammunity.org/2023/formulas/physics/college/c2is59vhoy3ovq4jsdc0xyhhhnt047hk32.png)
Now, let's solve the system of equations:
![\begin{gathered} 9\ast10^(15)=9\ast10^(14)v_1+5.98\ast10^(24)v_2 \\ \\ 10=-v_1+v_2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/gvtbixrv07k692nco4yhxd8dcd7wsfh4r2.png)