The question provides that:
![\begin{gathered} n=13 \\ p=0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nq35jethcssld1v39dug3q1r770h3rf0l4.png)
Therefore, we have that:
![q=1-p=1-0.5=0.5](https://img.qammunity.org/2023/formulas/mathematics/college/bcumj27q822ovuxcjnpfn5gst6a2hkmge7.png)
To check if we can use the normal distribution as an approximation, we will check the values of np and nq:
![\begin{gathered} np=13*0.5=6.5 \\ nq=13*0.5=6.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jqiqlbouyinmy6qsbpgggh12wpzhr2l8jn.png)
Since,
![\begin{gathered} np\ge5 \\ \text{and} \\ nq\ge5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8oswpjgfmt5ye42b4ex0p1509l2i5tkg1e.png)
then we can use the normal distribution as an approximation.
To evaluate P (at least 10), we are evaluating:
![P(X\ge10)](https://img.qammunity.org/2023/formulas/mathematics/college/in5u7xet9fgkp7v161b8hsnlmy468eq24n.png)
The standard deviation of the distribution is gotten to be:
![\sigma=\sqrt[]{np}=\sqrt[]{6.5}=2.550](https://img.qammunity.org/2023/formulas/mathematics/college/9s39s18hs13bvv1kl1v4x5otn5us37iwxo.png)
The mean is 6.5.
Therefore, the Z-score is gotten to be:
![Z=\frac{x-\bar{x}}{\sigma}](https://img.qammunity.org/2023/formulas/mathematics/college/e6su3l9xovt4yju4hjvwjwtdq6dz7ab1u7.png)
Hence, it is calculated to be:
![Z=(10-6.5)/(2.550)=1.37](https://img.qammunity.org/2023/formulas/mathematics/college/mrxhkny86d3jqfv7lljfncv4o20j6mbep8.png)
The probability is therefore given to be:
![P(Z\ge1.37)=Pr(0\le Z)-Pr(0\le Z\le1.37)](https://img.qammunity.org/2023/formulas/mathematics/college/vdi84r2sx1g6wpcx73396fsidcjm4jnn8s.png)
Using the Probability Distribution Table, we have:
![P(Z\ge1.37)=0.5-0.4147=0.0853\approx0.085](https://img.qammunity.org/2023/formulas/mathematics/college/rh55c2qalrqdmmxs12b244q85br2ak8p11.png)
Therefore, the answer is:
![P(at\text{ }least\text{ }10)=0.085](https://img.qammunity.org/2023/formulas/mathematics/college/y2ma0m0zw92gf1cgwztz7lwbawniagt90d.png)