Given:
Circumference of the circle = 832.38 cm
Central angle = 333°
Let's find the length of the arc of the circle.
To find the length of the arc, apply the formula below:
![\text{Length of arc = }(\theta)/(360)\ast2\pi r](https://img.qammunity.org/2023/formulas/mathematics/college/g3rezucnnckwhfcta5l8t9xatw0spopxv2.png)
Where:
θ = 333°
2πr = circumference = 832.38 cm
Thus, we have:
![\text{Length of arc = }(333)/(360)\ast832.38](https://img.qammunity.org/2023/formulas/mathematics/college/kk44vchqbfswa6yijuo3betc9k7bh16dle.png)
Solving further:
![\begin{gathered} \text{Length of arc = }0.925\ast832.38 \\ \\ \text{Length of arc = }769.95\text{ cm}\approx770.0\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ur5e9691nakxk06p29bp1ykjvu27juc5cb.png)
Therefore, the length of the arc of the circle to the nearest tenth is 770.0 cm
ANSWER:
770.0 cm