The Solution.
By Similarity Theorem, we have that Trapezoid SUTW is congruent to trapezoid TWVX.
So,
![\begin{gathered} (SU)/(TW)=(TW)/(VX) \\ \text{Where SU=10} \\ VX=44\text{ , TW=2x-1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p70j7n19qhlzxwdlagef1ckurkdajrkv0g.png)
Substituting these values into the ratio above, we get
![(10)/(2x-1)=(2x-1)/(44)](https://img.qammunity.org/2023/formulas/mathematics/high-school/40k2t0cs4tdnpziuxzb1wru3ig7jwjn9ex.png)
Cross multiplying, we get
![\begin{gathered} (2x-1)^2=44*10 \\ (2x-1)^2=440 \\ \text{Square rooting both sides, we get} \\ 2x-1=\sqrt[]{440} \\ 2x-1=\pm20.976 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9jl5djzvvzwg9i3gfzb2dm0z89yjewhje2.png)
![\begin{gathered} 2x=1\pm20.976 \\ \text{Dividing both sides by 2, we get} \\ x=(1\pm20.976)/(2) \\ \\ x=(1+20.976)/(2)=(21.976)/(2)=10.988 \\ Or \\ x=(1-20.976)/(2)=-9.988\text{ but x cannot be negative.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z1w7lt4ex5491lju4x0qi44t4uo3u3magv.png)
So, the correct value of x is 10.988
To find the length TW:
We substitute 10.988 for x in 2x-1
![\begin{gathered} TW=2(10.988)-1 \\ \text{ =21.976-1} \\ \text{ =20.976}\approx21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7qtxqx5a0yy974bmkmlk5r1q9jxpw36im4.png)
Thus, the correct answer is:
x = 10.988
TW = 20.976