Looking at the function f(x), it is in the factored form, so we can easily find the zeros of the function (that is, the x-intercepts) by equating each factor to zero:
![\begin{gathered} x-a=0\rightarrow x=a\\ \\ x-b=0\rightarrow x=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xb6ys6mozbclg56i4j2bhlvqv4x7qd55jt.png)
The x-coordinate of the vertex is given by the average value of the zeros:
![\begin{gathered} x_v=(x_1+x_2)/(2)=(a+b)/(2)\\ \\ y_v=f(x_v)=((a+b)/(2)-a)((a+b)/(2)-b)=((-a+b)/(2))((a-b)/(2))=-((a-b)^2)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/j64ey7l82bvwpdqrwyia0nvr0sqm3urqb9.png)
And the y-intercept can be found by using x = 0:
![\begin{gathered} f(0)=(0-a)(0-b)\\ \\ f(0)=ab \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vh5dpkaupprpszakd0298r5bn58szcnftd.png)
So the graph of this quadratic equation is given by: