Answer:
![A^(\prime)\cap(B\cup C^(\prime))=\lbrace1,7,8,9,10\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/zcxj23cpseepnjk1fi43fpbkiq502i7zjk.png)
Explanations:
Given the following sets of numbers:
![\begin{gathered} U=\mleft\lbrace1,2,3,\ldots10\mright\rbrace \\ A=\mleft\lbrace2,\text{ 3, 4, 6}\mright\rbrace \\ B=\mleft\lbrace1,\text{ 3, 8}\mright\rbrace \\ C=\mleft\lbrace1,\text{ 3, 4, 5, 8}\mright\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xhzipryip5jfjbeibc4r3sgqhumg46n8ck.png)
Before we get the required set, we will need to get the complement of set A (A') and the complement of set C'.
Compliments of a set are the elements in the universal set but not in the original set.
The complements of A and C are given as:
![\begin{gathered} A^(\prime)=\mleft\lbrace1,5,7,8,9,10\mright\rbrace \\ C^(\prime)=\mleft\lbrace2,\text{ 6, 7, }9,\text{ 10}\mright\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pl84th6nma1fkrl01f9zaczking1g20r5c.png)
For the element of the set A' n (B U C')
First, we need to get (BUC')
![B\cup C^(\prime)=\mleft\lbrace1,2,3,6,7,8,9,10\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/vh2tw9jprgh5ekvomhuutwvfi4cm1609tf.png)
Note that the union of two sets (U) is the combination of all the elements in both sets without repeating elements.
![A^(\prime)\cap(B\cup C^(\prime))=\mleft\lbrace1,7,8,9,10\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/z4pcg5ytx9d2gwzfplwtgvx6335p92y712.png)
Note that the intersection of two sets (n) are the common elements in both given sets.